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A 2-D calculation is presented for the transport of plasma in the edge region of a divertor toka- 

mak solving continuity, momentum, and energy balance fluid equations. The model uses anomalous 

radial diffusion, including perpendicular ion momentum, and classical cross-field drifts transport. 

Parallel and perpendicular currents yield a self-consistent electrostatic potential on both sides of 

the magnetic separatrix. Outside the separatrix, the simulation extends to material divertor plates 

where the incident plasma is recycled as neutral gas and where the plate sheath and parallel cur- 

rents dominate the potential structure. Inside the separatrix, various radial current terms - from 

viscosity, charge-exchange and poloidal damping, inertia, and VB - contribute to the determining 

the potential. The model rigorously enforces cancellation of gyro-viscous and magnetization terms 

from the transport equations. The results emphasize the importance of ExB particle flow under 

the X-point which depends on the sign of the toroidal magnetic field. Radial electric field (EJ 

profiles at the outer midplane are small with weak shear when high L-mode diffusion coefficients 

are used and are large with strong shear when smaller H-mode diffusion coefficients are used. The 

magnitude and shear of the electric field (EY) is larger both when the core toroidal rotation is 

co-moving with the inductive plasma current and when the ion V&drift is towards the single-null 

X-point. 
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I. INTRODUCTION 

The magnetic separatrix at the edge of a divertor tokamak identifies the boundary between 

the interior core region where magnetic field lines close on themselves and the outer region where 

field lines strike material surfaces. In the outer region called the scrape-off layer (SOL), the plasma 

profiles and electric fields have an inherent 2-D variation assuming toroidal symmetry. On the other 

hand, well inside the core region, the variation is dominantly radial owing to rapid poloidal trans- 

port. The drift velocity caused by the radial electric field is believed important for the reduction of 

edge turbulence in the pedestal-gradient region via shear giving the L-H mode transport barrier just 

inside the separatrix,,’ and for causing asymmetries in the divertor plasma.2 A thorough summary 

of recent experimental work on the effect of B-field direction for tokamaks is found in Ref..3 

As for core transport, edge/SOL transport modeling requires the use of anomalously large radial 

diffusion coefficients which is believed to arise from plasma turbulence.‘y4 It is thus important to 

include the effects of both the turbulence and the classical drift velocities in a consistent manner 

such that the basic properties of the magnetized system such as ambipolarity and no transport 

from magnetization fluxes are preserved. For example, even though the classical cross-field energy 

fluxes proportional to temperature gradients as presented in Ref. 5 appear in the as a heat-flux term 

in the transport equations, their net effect on transport is only proportional to the much smaller 

V&drift. This type of cancellation is well known and has been discussed by various authors, e.g., 

Refs. 7,6. A related cancellation that must be accounted for in the momentum equation is the 

gyroviscosity term with the magnetization momentum fl~x.~,’ 

In this paper, we present a system of 2-D transport equations which include both anomalous 

radial diffusion and classical particle drifts for the edge/SOL region, focusing on the self-consistent 

electrostatic potential and the resulting E x B-particle drifts. In Sec. II, the geometry and plasma 

model are described. In Sec. III, results are presented for the divertor plasma region and the 

influence of reversing the magnetic field. Also shown are radial electric field profiles near the outer . 

midplane. A summary of the results is presented in Sec. IV. 



II. GEOMETRY AND PLASMA MODEL 

A. Geometry 

We consider the edge-plasma region of a tokamak device as shown in Fig. 1. Toroidal symmetry 

is assumed, and the 2-D mesh is constructed from the magnetic flux surfaces. The toroidal B-field 

for the “standard” direction, B,, is out of the paper in the z direction, such that the ion V&drift 

is downward toward the X-point. The plasma current is taken in the negative z direction giving 

rise to the poloidal B-field component, &, in the clockwise direction. The x-coordinate is in the 

poloidal direction along the flux surface and the y-coordinate is the radial coordinate ‘orthogonal 

to the flux surface. In addition, the coordinate orthogonal to B and lying in the flux surface is 

called w with unit vector i, = -(&/B)& + (B&3)& ( sometimes referred to as the I-direction). 

Divertor plates are located at the bottom of device on each side of the magnetic X-point and are the 

source of recycling gas. In the radial direction, the calculations include a portion of the core-edge 

plasma well inside the magnetic separatrix. 

B. Basic equations 

The basic aspects of our edge plasma model are obtained by considering the equations of 

continuity, momentum, and energy for both the electrons and ions as given by Braginskii.” We 

use SI units. The continuity equations have the form 

h,i 
dt + v l  (72,,iv,,i) = sep; 

7 
(1) 

where n,,; and v,,; are the electron and ion densities and velocities, respectively. The source term 

S,Pi arises from ionization of neutral gas and recombination; generally S,P = Sr for singly ionized ? 
plasmas unless a current source such as a probe is present in the plasma. 

The momentum equations are given by 

~%,ime,ive,i 
dt 

+ V  l  (me,jne,iVe,iVe,i) = -TJP,,i + qn,,; (E + Ve,i X B) - Fe,; - Re,i + Ski. 7 (2) 

Here m; is the ion mass, P, i = n, iTe i is the pressure with T, i 7 7 ‘) 9 being the temperatures, q is the 

particle charge, E is the electric field, B is the magnetic field, F, i = V l  I& i is the viscous force, I 7 

and R,,i is the thermal force.1° The source Sre 7 contains effects of extra momentum exchange with, 

for example, neutrals. 



The ion and electron energy equations can be written in the form 

E (iE,i) -I-v0 (&ipe,i+qe,i) =Ve,iV.Pe,i -II,,; l Vv,,i+Q,,;. (3) 

Here, qe,; are the heat fluxes, and &e,; are volume heating terms.” 

Since anomalous radial transport processes are believed important, we include these in the 

equations in a systematic manner by allowing enhanced ion and electron collisions frequencies in 

the classical model as described in detail in Ref. 11 for a slab geometry. This procedure clarifies the 

role of the diamagnetic fluxes and the radial current driven by anomalous viscosity. In addition, 

the approach gives us confidence that the diffusive radial fluxes for particles, parallel momentum, 

and energy preserved the symmetries and conservations laws of the basic system. We assumed 

that collisions are sufficiently strong to maintain approximately Maxwellian distributions and that 

the effect of short scale-length turbulence can be described by a diffusion model. Consequently, 

the form of the anomalous transport coefficients obtained from the slab analysis can be used in a 

toroidal system provided that the major and minor radii are large compared to the edge plasma 

scale length. 

Because of the parameters typical of edge parameters, a systematic ordering” leads to a reduced 

set of equations. The magnetic field is taken static and given. The electric field comes from 

E -- - 04, where 4 is the electrostatic potential. The equation for 4 is obtained through the 

assumption of quasineutrality (ni = ne) rather than Poisson’s equation, where one of the continuity 

equations, say for 12e, is replaced by the current continuity equation, V . J = 0, for 4. The only 

full momentum component included is that of the ions along the magnetic field, ~11, although the 

inertialess momentum equations in the w and y directions are used to determine the cross-field 

velocities. The effects of toroidicity are included by used the guiding-center fluxes for a tokamak 

geometry. For radial transport, local anomalous transport is assumed to dominate over neoclassical 

processes from collisional viscosity which is verified a posteriori. 

The reduced set of five differential equations couples the five unknowns n;, ~11, T,, Ti, and 4 in 

the poloidal plane. The detailed form of the equations used for the present study in UEDGE are 

given in the Appendix where the model for the neutral gas is also given. Note that more complex 

models for neutrals and nonorthogonal mesh capability do exist for UEDGE as described in Refs. 

12 and 13, but here we focus effects of electric fields and cross-field drifts. 



1 . Perpendicular drifts and currents 

The two perpendicular velocity are v, in the w-direction (or L-direction) within the flux surface, 

and the radial vy. From the momentum equations, Eq. (2), the velocities can be solved for iteratively 

beginning with the dominant EX B and diamagnetic drifts for ions and electrons 

= vw,E + vw,VP 

G Vy,E + Vy,VP + Vy,a 

(4) 

(5) 

where the ambipolar anomalous diffusive velocity (vyla CC Da) is also shown. These velocities give 

no contribution to V l  J = 0 for B constant.’ The first order corrections to vy do contribute to 

V . J = 0 and are given by 

2d a G-0 8 (hx + uneo) 
~ VWO + V i ,VB l  Ty* 

ci 

In order, these terms arise from anomalous viscosity, inertia, charge-exchange and neoclassical 

transport, and the guiding-center particle drift from the nonuniform magnetic field. For a tokamak, 

B z R&/R, so for ions and electrons (for example, see Ref. 6) 

VVB = 
& (‘JP;,e + m;,env$ A 

qB2R 
(iR X Q . (7) 

This approximation that VVB is vertical is generally very good for tokamaks. For the electrons, the 

correction to zte,yl is simpler owing to their smaller mass: 

%Yl = Ve,VB l  lye 

In the z-direction, the corrections reduce to vXr % vVB l  P,; the other corrections are much 

smaller than for vy , primarily because 1 vyo 1 << 1 V,O [ and radial gradients are steeper than poloidal 

gradients.ll 
,. 

The equation for the potential is the current continuity equation obtained by subtracting the 

ion and electron continuity equations and assuming quasineutrality, n; = n,: 

VJ($) = $+gJx) + g(;Jy) = 0 (9) 
X Y 

where the toroidal metric coefficients V, h,, and h, are given in the Appendix. Here by J we mean 

the currents excluding the magnetization current since the divergence of the latter is automatically 
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zero owing to it being the curl of a vector. 6 The remaining current components are 

J 
B 

= 72e(Vi,VB - Ve,VB) l  ix -I- Ji1-f 1 ix -I- ne(‘uilyl 
A 

- Ve,yl > i,. 

Note that the terms arising from the vvB-drift do not explicitly depend on 4 the potential, so they 

act as source terms in Eq. (9). Th e expression for the parallel current, Jll, comes from the electron 

parallel momentum equation, Eq. (2), ignoring inertia and is 

J 
en B 1 OPe 84 

( 

dT 
II 

- -- - 
0.51meue B, n 3~ - edz 

-+0.71e ) 
> 01) 

where ve is the electron collision frequency and the numerical coefficients are described in Ref. 10. 

2 . Boundary conditions 

The extended discussion of the boundary conditions at the divertor plates is given elsewhere.14 

We assume that the plasma flows to a perfectly absorbing wall (which are recycled as neutrals). 

Consequently, we may use zero derivative or “extrapolation” boundary conditions for the density 

with little change in the solution. For the parallel ion velocity, we use the Bohm sheath condition 

whose generalization to include E x B drifts given by7 

Here Q! s I-&/BI < I, Cs = [(Te + T;)/mJ1’2 is the ion acoustic speed, and the * sign is used 

at the outer (inner) plate. If the poloidal velocity at the plate exceeds this limit, we use a “slip” 

condition of dvii(ldx = 0 at the plates 

The boundary condition for 4, is determined by the sheath potential, &. The plate is assumed 

to be conducting and at a potential, 4P. The potential on the plasma side of the sheath is thus 

g& + qb, where15 
- 

4 
T 

S- ---3n 2fi e [ ( 

JII - envq - env,,/a 

11 . en We 
(13) 

where vte E (2Te/me)l12 and VW, = v~&-Z)w,Vp is the perpendicular electron velocity from Eq. (4). 

For the energy equations, the boundary conditions at the plates are specified in terms of the 

energy fluxes in the y-direction, I?Ee and I?Ei, which are defined following Eqs. (A6) and (A7) 

in the Appendix. Neglecting the viscosity, these fluxes are set as follows: I& = denTeVe,x and 

L?Gi = &irbTivi,xT where Si E 2 and Se z +s/Te $- 2 z 5 for Maxwellian distributions. 
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For the neutral gas which is recycled from incident ions on the divertor plates, the poloidal 

particle flux is specified as a fraction R, of the incident ion flux, i.e., IYn x 9 = -R& xc’ ‘) 

At the radial boundary located at the interface between the edge plasma and the core plasma, 

here located we1 

poloidal position . The parallel velocity is taken to have zero radial derivative (dvll/ay = O), a type 

of “slip” condition so that 1~11 can take on values consistent with the nearby plasma dynamics, rather 

than forcing an arbitrary boundary condition. For the energy equations, the power is specified in 

each of the ion and electron channels, subject to the constraint that Te and Ti are also constant 

poloidally. 

.l inside the separatrix, we specify the density to be a constant, independent of 

The potential, 4, requires two boundary conditions since it is a fourth order differential equation 

in y owing to the radial ion velocity (and current) driven by viscosity in Eq. (6). The first condition 

is that 4 is a constant poloidally, with the value of the constant set by the condition that there is 

no net current through this boundary .(unless a current source is present). This condition follows 

directly from integration of Eq. (9) in the periodic x-direction. The second condition on 4 comes 

somewhat indirectly. Because the parallel electron conduction 

constant in the x-direction in the vicinity of the core boundary. 

is so large, Te is very nearly a 

Consequently, one can use the 

parallel Ohm’s law, Eq. (ll), with dTe/dx = 0 to find the x-variation of q5 on a neighboring 

flux surface. This determines the radial derivative of 4 to within a constant, and the constant is 

determined by the condition that the poloidal-average of the toroidal velocity, v,, is some specified 

value called V, or we can use the condition dv,/dy = 0. 

On the wall boundaries in the private-flux region below the X-point and the outer wall, we 

use a density-gradient scale-length of 2 cm. As at the core boundary, for vll we use dvll/ay = 0. 

The values of Te i are set to 2 eV. For 4, two conditions are again needed because of the radial 9 

derivatives in Jy , but here the potential is dominated by the parallel currents. Thus, Ey = 0 and 

&!Yy/8y = 0 are used to impose minimal constraints on the 4 in this region. 

III. RESULTS OF TRANSPORT SIMULATIONS 

In this section, we present a series of results from simulations from the UEDGE code to illustrate 

the role of classical cross-field drifts on both the divertor region plasma and on the core/SOL 

boundary region near the outer midplane. The basic DIII-D geometry shown in Fig. 1 is used. The 
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parameters of these calculations are a core-edge density of 3 x 101' mD3, a total power of 1.5 MW 

split equally between ions and electrons. The recycling coefficient is R, = 0.90 to 0.98. We use 

anomalous radial diffusion coefficients ranging from 0.25-1.0 m2/s, but we generally keep all the 

same value which we denote simply as D. Explicitly, the separate coefficients are Da, vail, ~a~,‘Xe~ 

and xi for density, parallel ion velocity, perpendicular ion velocity, electron energy, and ion energy, 

respectively. For calculating the potential, we find that the radial current arising from Eq. (6) 

is dominanted by the anomalous viscosity and VB terms compare to the charge-exchange and 

neoclassical terms discussed elsewhere.16 

A. Influence of drifts on the divertor plasma 

Recently, we showed the effects of reversal of B, for the case corresponding to R, = 0.95 

and D = 0.5 on the density and temperatures at the inner and outer divertor plates and the 

particle flow. l7 It was shown for these parameters that the EX B flow under the X-point is largely 

responsible for the substantial plate density and temperature changes with the reversal of B,. This 

effect can be understood from the radial electric field that arises in the private flux region owing to 

the drop in Te in moving down from the X-point (see Fig. 1). This electric field points downward 

below the X-point, and so for positive B, particles ExB-drift from the outer divertor to the inner 

divertor below the X-point. Upon changing B, to a negative value, the drift reverses, and the 

corresponding flow is towards the outer divertor. For these cases, the E x B flow under the X-point 

dominants the oppositely directed EX B flow in the SOL region. 

We have repeated these calculations for at range of recycling coefficients from R, = 0.9 to 

0.98. As for the case just describe, we use the inner-core boundary condition of d~,ldy = 0, 

so no core source of toroidal momentum is assumed. The qualitative behavior is the same as just 

described, with the ratio of Te for positive to negative B, increasing at lower R,, reaching a value of 

2.9 eV / 14.4 eV on the inner plate for R, = 0.9. The corresponding density ratio is 1.8e20/0.5e20. 

The outer plate is less sensitive to the sign of B,, but has the opposite trend to the inner plate. 

As R, is increased toward 0.98, the divertor plasma detaches on both inner and outer plates, with 

the inner plate detaching much earlier for B, positive, and only marginally sooner for B, negative. 

Once detached, the flow in the private flux region is more complicated, and does not show a simple 

reversal with the sign of B,. 



9 

The case of R, = 0.9 corresponds to low rather divertor density, similar to conditions obtained 

in the JET tokamak where Langmuir probe measurements were made of the parallel current on 

each divertor p1ate.l’ We show the resulting parallel current density obtained from our simulations 

in Fig. 2 for the inner and outer divertor plates for each sign of B,. Here the current sign convention 

is that the current density flowing into each plate is plotted as positive. Therefore, for the upper 

set of two plots corresponding to positive B,, a current flows in the SOL from the hotter outer 

plate to the cooler inner plate as expected. However, in the private-flux region, outer plate current 

changes sign, just as found in the experiment. l8 For the negative B, case, the current as does not 

follow the simple hotter-to-colder direction for the thermoelectric. Again, much of the qualitative 

structure corresponds to the JET data. For a closer comparison, the reader is referred to Figs. 3 

and 4 of Ref.18. 

B. Electric field profiles at the core/SOL interface 

The electric field at the core/SOL boundary can change dramatically with changes in the toroidal 

velocity at the core-boundary, V,, and with the anomalous diffusion coefficients. The profile of Ey 

at the outer midplane is shown in Fig. 3, for two values of V,, both for forward and reversed B,. The 

label of L4 = rtl in the figure corresponds to a toroidal velocity of V, = ~12 km/s at the interior core 

boundary of our simulation. Thus, L4 = +l means that the assumed source of the core rotation, 

the neutral beams, are injected in the same direction as the plasma current. The intermediate 

case labeled & = 0 corresponds to using the “slip” boundary condition d&-/dy = 0. These result 

predict that the magnitude and shear in the radial electric field, Ey, is largest for negative L+, 

corresponding to counter-injection of the neutral beams. There is experimental evidence that the 

L-H mode power threshold is som-ewhat lower for counter-injectior$’ which qualitatively fits the 

notion of Ey shear stabilization of turbu1ence.l For negative B,, the Ey well is shallower, again 

qualitatively in the correct sense for the higher L-H mode power threshold this case. 

The calculated strength of Ey is also strongly dependent on the magnitude of the anomalous 

radial diffusion. In Fig. 4a, we show the effect on Ey of changing the value of all of the anomalous 

diffusion coefficients; D = 0.25 m2/s can be thought of as H-mode-like values and D = 1.0 m2/s 

as L-mode values. The edge plasma is self-consistently evolved to equilibrium profiles with the 

UEDGE code, and the corresponding electron temperature profiles are plotted in Fig. 4b. One 

sees that there is a sensitive connection between between lowering the diffusion and developing 
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a strong Ey well through changes in the plasma profiles. In should be noted although all of the 

anomalous coefficients are changed together, the strongest influence comes from xe,; for energy 

transport. Changing the anomalous viscosity, ~~1, has a fairly small effect since plays the role of 

connecting the core-edge and the SOL through the separatrix boundary-layer. 

A more detailed understanding of the Ey profiles in the cases of D = 1 m2/s and D = 0.25 m2/s 

can be obtained from Fig.5 where the different components are plotted. From the radial ion 

momentum equation in lowest order, one can obtain the oft-used expression for Ey: 

E 
dP 
-i + vi,B, - vizB, Y=d P 

Because our simulation evolves v;, and v;, self-consistently, we can use these to understand the 

details. From Fig.5, it is clear that the ion pressure plays a major role in increasing the magnitude 

of Ey, an anticipated result since the lower value of D naturally leads to a larger gradient. But one 

also sees that the poloidal velocity, viz, plays an important role in providing a large amount of the 

shear in Ey . 

IV. SUMMARY 

We have presented a model for 2-D edge-plasma transport in tokamaks which includes anoma- 

lous radial diffusion transport and classical cross-field drifts. Toroidal symmetry is assumed and 

five differential equations are solved for the variables n;, VII, Te, T;, and 4. The model rigorously 

enforces cancellation of’gyro-viscous and magnetization terms from the transport equations and re- 

quires the anomalous terms to mimic classical transport in order to preserve basic properties of the 

ion-electron sytem. The potential is solved across the separatrix where anomalous radial transport 

of ion momentum is the dominate source of radial current depending directly on the potential, 4. 

In the divertor region, we find that EX B flow under the X-point is the dominate source of 

inner/outer divertor asymmetry upon reversal of the toroidal field, B,. The relative effects are 

stronger for attached plasma and in determining the detached plasma boundary as parameters are 

varied. The structure and magnitude of the currents calculated at the divertor plates are in rough 

agreement with measurements in JET.ls 

The shape and magnitude of the radial electric field, Ey, at the midplane is found to be sensitive 

to both the assumed toroidal rotation of the core plasma at the inner core-edge boundary and the 
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size of the anomalous diffusion coefficients. Co-rotation of the core ions with the plasma current 

gives a weaker Ey than counter injection, suggesting better stabilization of edge turbulence for 

the latter case. The self-consistent evolution of the edge profiles shows that large magnitude and 

shear of Ey occurs at low diffusion coefficients, with the shear coming largely from the shear in the 

poloidal velocity component. 
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Appendix A. Detailed equations used for the simulations 

The basic form of the transport equations without cross-field drifts corresponds to that given 

for a number of edge transport codes being based on classical fluid equations, one of the first 

being the B2 code as later specified in Ref. 20. Here we show the modifications to this equation 

set as used in UEDGE when classical cross-field drifts are included. The plasma velocities in our 

equations are denoted by the symbol u and differ from the total velocities in the fluid equations by 

having the classical cross-field pressure or temperature gradient terms omitted since these have zero 

divergence, or cancel with gyro-viscous.terms, and therefore do not contribute to the transportY 

Note that 2111 = ~11. For the poloidal ion velocity 

B 
u;, = -pill + V,,E + Viz,VB, (Al) 

where the x-component of ‘Ui,VB comes directly from Eq. (7). For the radial ion velocity 

D, dni 
uiY = -- - + Vy,E + viypis + &y,VB, 

ni dY 

where the last two terms come from the corrections to v;,~I given in Eq. (6). 

@2) 

The electron velocities are obtained from 

??.+ ZiUi 
u,=-- 

(JII + Jvis + JVB) 
. 

ne ene 

The ion continuity equation 

18 v 
-7L;UiJ + --((-?J72;Uiy) = ((give) 

VdY hy 
- (6Ve))ne% W) 

1. l  1 l  1 . 1 The terms (a,~,} and (Give) are rate coefficients for recombination ana lonrzatron, respectrvely. 

The metric coefficients are h, E l/llV~ll, h, E l/llVyll, and V = 2rRh,h, is the volume element 

for toroidal geometry with major radius R. 2o For brevity of presentation, the metric coefficients are 

suppressed in the remaining equations. 

The ion parallel momentum equation 

d d 
-(miniu;II) + T& 
dt 

m;niV;/lUiy - qya 2) = g (-2) (A5) 

where Pp = pe + P;, Q is the classical viscosity, qx = ( Bz/B)2v~~, and qya is anomalous. All classical 

viscosities and thermal conductivities are flux-limited to prevent unphysically large values in any 

regions with long mean-free paths. 
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The electron energy equation 

t(~n~T~)+~[~neu,,T,-~e~~-0.7~neT~~~]+~(~n~u,,Te- 

dP e dP i B, dP 
= Uix 

OX 
- Uiy 

dY 
- u;,B~ + E  l  J - Icq(Te - Ti) + SEe. 

dT e 
KeY aY > 

Here the poloidal heat conductivity is classical, Ke, = (B,lB)2 = ~11, radial is anomalous, Key = 

nx,, and I& is the collisional energy exchange coefficient. 

The ion energy equation 

As for the electrons, the poloidal thermal conduction (and viscosity) coefficients are classical and the 

radial are anomalous. The energy fluxes in the square brackets in of Eqs. (A6) and (A7) are denoted 

I?Ee and IEi, respectively, and are used to define the energy boundary conditions are the divertor 

plates in Sec. II; note that cross-field energy flux terms proportional to temperature gradients which 

do properly appear in Ref. 10, are omitted here since these fluxes have zero divergence except for 

that convected by vVB. 

The current continuity equation, VJ(+) = 0, used to calculate the potential is given by Eqs. (9) 

and (10). Note that the expression for the radial current is very different from that in Ref. 20. 

For the calculations reported in this paper, we use a simplified diffusive model of the neutral 

transport where 

v, = - v(%Jn) 
mPn(ni(%xVi) + ne(W)e)) g 

The neutral gas density, ng, is determined by solving the continuity equation 

kcnn) + ~bnvnx) + $(nnVny) = ((a,Ve) - (OiVe))7Ze?Zn. 

(A@ 

(A9) 
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Figures 
. 

FIG. 1. The poloidal plane of the DIII-D tokamak showing the edge region being simulated. The 

magnetic flux-surface mesh is shown to illustrate the coordinates: x is along the flux surface 

and y is orthogonal to the flux surface. The w coordinate shown is perpendicular to B, and lies 

in the flux surface, slight out of the poloidal plane. The directions of the B-field components 

and plasma current, I& correspond to typically operating conditions for DIII-D. 

FIG. 2. The parallel current density on the inner and outer divertor plates for the low density case 

ofR,= 0.9 for both signs of the toroidal field, B,. Positive current means current directed into 

the plate on each side. 

FIG. 3. Radial electric field, Ey, versus radius at the outer midplane for three different toroidial 

momentum boundary conditions at the interior core boundary. Here L4 = 1 corresponds to 

co-injection of the neutral beams with the plasma current at a level giving V, = -12 km/s, and 

the opposite for L4 = - 1. For L$ = 0, dv,/ay = 0 is used. 

FIG. 4. Midplane plots of a), radial electric field, Ey, for different anomalous diffusion coefficients, 
l-T l ,  on 3 I  and b), electron temperature. units of II are mu/s. 

FIG. 5. Components of the radial electric field from the radial ion force balance equation. Here a) 

has D = 1.0 m2/s, and b) has D = 0.25 m2/s 
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